Pengertian minyak bumi Adalah | Pengertian, Komposisi, Proses Pengolahan, Produk, dan Penggunaan
Minyak bumi adalah suatu campuran kompleks yang sebagaian besar terdiri atas hidrokarbon. Hidrokarbon yang tergantung dalam minyak bumi adalah alakana. Kemudian sikloalkana. Komponen lainnya adalah hidrokarbon aromatik, sedikit alkena, dan berbagai senyawa karbon yang mengandung oksigen, nitrogen, dan belerang.
Minyak mentah (petroleum) adalah campuran yang kompleks, terutama terdiri dari hidrokarbon bersama-sama dengan sejumlah kecil komponen yang mengandung sulfur, oksigen dan nitrogen dan sangat sedikit komponen yang mengandung logam. Struktur hidrokarbon yang ditemukan dalam minyak mentah.
Sumber energi yang banyak digunakan untuk memasak, kendaraan bermotor, dan industri, berasal dari minyak bumi, gas alam, dan batu bara. Ketiga jenis bahan bakar tersebut berasal dari pelapukan sisa-sisa organisme sehingga disebut bahan bakar fosil.
Minyak bumi dan gas alam diduga berasal dari jasad renik lautan, baik tumbuhan maupun hewan. Sisa-sisa rganisme itu mengendap didasar lautan, kemudian tertutup oleh lumpur. Lapisan lumpur tersebut lambat laun berubah menjadi batuan karena pengaruh tekanan lapisan di atasnya. Sementara itu dengan meningkatnya tekanan dan suhu, bakteri anaerob menguraikan sisa-sisa jasad renik itu dan mengubahnya menjadi miyak dan gas. Proses terbentuknya minyak dan gas ini memakan waktu jutaan tahun.
Minyak dan gas yang terbentu meresap dalam bentuk batuan yang berpori bagaikan air dalam batu karang. Minyak dan gas dapat pula bermigrasi dari suatu daerah ke daerah yang lain, kemudian terkonsentrasi jika terhalang oleh lapisan yang kedap. Walaupun minyak bumi dan gas alam terbentuk di dasar lautan, banyak sumber minyak dan gas yang terdapat di daratan. Hal itu terjadi karena pergerakan kulit bumi, sehingga sebagaian besar lautan menjadi daratan.
B. Komposisi hidrokarbon pada minyak bumi
Minyak bumi tersusun dari senyawa hidrokarbon yang berbeda-beda. Perbedaan ini tergantung dari faktor umur, suhu pembentukan, dan cara pembentukan. Minyak dari indonesia mengandung banyak senyawa aromatik seperti benzena, sedangkan minyak bumi dari rusia mengandung banyak senyawa sikloalkana seperti sikloheksana.
Berdasarkan hasil analisis yang telah dilakukan, diketahui bahwa dalam minyak bumi terdiri atas bermacam-macam senyawa hidrokarbon. Senyawa-senyawa hidrokarbon tersebut sebagai berikut.
Berdasarkan hasil analisis yang telah dilakukan, diketahui bahwa dalam minyak bumi terdiri atas bermacam-macam senyawa hidrokarbon. Senyawa-senyawa hidrokarbon tersebut sebagai berikut.
- Alkana
Golongan alkanan yang banyak terdapat dalam minyak bumi adalah n-alkana dan isoalkana. N-alkana adalah alkana jenuh berantai lurus dan tidak bercabang, contoh n-oktana. Isoalkana adalah alkana jenuh yang rantai induknya mempunyai atom c tersier dan bercabang, contoh isooktana. Alkana disebut juga parafin. Parafin adalah senyawa hidrokarbon tersatuasi yang mengandung rantai lurus atau bercabang yang molekulnya hanya terdiri atas atom karbon (c) dan hidrogen (h).
- Sikloalkana
Sikloalkana adalah senyawa hidrokarbon berantai tunggal dan berbentuk cincin. Golongan sikloalkana yang terdapat dalam minyak bumi adalah siklopentana seperti metil siklopentana dan sikloheksana seperti etil sikloheksana. Sikloalkana juga dikenal dengan nama naptena. Naptena adalah senyawa hidrokarbon tersaturasi yang mempunyai satu atau lebih ikatan rangkap pada karbonnya. Naptena memiliki rumus umum cnh2n dan mempunyai ciri-ciri mirip alkana tetapi mempunyai titik didih yang lebih tinggi.
- Hidrokarbon aromatik
Hidrokarbon aromatik adalah hidrokarbon yang tidak tersaturasi, memiliki satu atau lebih cincin planar karbon-6 atau cincin benzena. Pada struktur ini, atom hidrogen berikatan dengan atom karbon dengan rumus umum cnhn. Jika hidrokarbon aromatik dibakar, akan menimbulkan asap hitam pekat dan beberapa bersifat karsinogen (menyebabkan kanker). Senyawa hidrokarbon aromatik yang terdapat dalam minyak bumi adalah senyawa benzena, contoh etil benzena.
- Kandungan unsur kimia dalam minyak bumi
Secara umum, komponen minyak bumi terdiri atas lima unsur kimia, yaitu 83-87% karbon, 10-14% hidrogen, 0,05-6% belerang, 0,05-1,5% oksigen, 0,1-2% nitrogen, dan < 0,1% unsur-unsur logam.
- Sulfur (belerang)
Minyak mentah mempunyai kandungan belerang yang lebih tinggi. Keberadaan belerang dalam minyak bumi sering banyak menimbulkan akibat, misalnya dalam gasoline dapat menyebabkan korosi (khususnya dalam keadaan dingin atau basah), karena terbentuknya asam yang dihasilkan dari oksida sulfur (sebagai hasil pembakaran gasoline) dan air.
- Oksigen
Oksigen dapat terbentuk karena kontak yang cukup lama antara minyak bumi dengan atmosfer di udara. Kandungan total oksigen dalam minyak bumi adalah antara 0,05 sampai 1,5 persen dan menaik dengan naiknya titik didih fraksi. Kandungan oksigen bisa menaik apabila produk itu terlalu lama berhubungan dengan udara. Senyawa yang terbentuk dapat berupa: alkohol, keton, eter, dll, sehingga dapat menimbulkan sifat asam pada minyak bumi. Oksigen dapat meningkatkan titik didih bahan bakar.
- Nitrogen
Umumnya kandungan nitrogen dalam minyak bumi sangat rendah, yaitu 0,1-2%. Kandungan tertinggi terdapat pada tipe asphalitik. Nitrogen mempunyai sifat racun terhadap katalis dan dapat membentuk gum (getah) pada fuel oil. Kandungan nitrogen terbanyak terdapat pada fraksi titik didih tinggi.
- Unsur-unsur logam
Logam-logam seperti besi, tembaga, terutama nikel dan vanadium pada proses catalytic cracking mempengaruhi aktifitas katalis, sebab dapat menurunkan produk gasoline, menghasilkan banyak gas, dan pembentukkan coke. Pada power generator temperatur tinggi, misalnya oil-fired gas turbine, adanya konstituen logam terutama vanadium dapat membentuk kerak pada rotor turbine. Abu yang dihasilkan dari pembakaran fuel yang mengandung natrium dan terutama vanadium dapat bereaksi dengan refactory furnace (bata tahan api), menyebabkan turunnya titik lebur campuran sehingga merusakkan refractory itu.
- Komposisi molekul hidrokarbon dalam minyak bumi
Golongan hidrokarbon-hidrokarbon yang utama adalah parafin, naptena, aspaltena, dan aromatik. Komposisi molekul hidrokarbon yang terkandung dalam minyak bumi berdasarkan beratnya.
Berdasarkan komponen terbanyak dalam minyak bumi, minyak bumi dibedakan menjadi tiga golongan, yaitu parafin, naftalena, dan campuran parafin-naftalena.
- Minyak bumi golongan parafin
Sebagian besar komponen dalam minyak bumi jenis parafin adalah senyawa hidrokarbon rantai terbuka. Minyak bumi jenis ini dimanfaatkan untuk bahan bakar karena merupakan sumber penghasil gasolin.
- Minyak bumi golongan naftalena
Komponen terbesar dalam minyak bumi jenis naftalena berupa senyawa hidrokarbon rantai siklis atau rantai tertutup. Minyak bumi jenis ini digunakan untuk pengeras jalan dan pelumas.
- Minyak Bumi Golongan Campuran Parafin-Naftalena
Minyak bumi golongan ini komponen penyusunnya berupa senyawa hidrokarbon rantai terbuka dan rantai tertutup.
C.PROSES PENGOLAHAN MINYAK BUMI
Tahap Lengkap Pengolahan Minyak Mentah
Minyak mentah (crude oil) yang diperoleh dari hasil pengeboran minyak bumi belum dapat digunakan atau dimanfaatkan untuk berbagai keperluan secara langsung. Hal itu karena minyak bumi masih merupakan campuran dari berbagai senyawa hidrokarbon, khususnya komponen utama hidrokarbon alifatik dari rantai C yang sederhana/pendek sampai ke rantai C yang banyak/panjang, dan senyawa-senyawa yang bukan hidrokarbon.
Untuk menghilangkan senyawa-senyawa yang bukan hidrokarbon, maka pada minyak mentah ditambahkan asam dan basa.
Minyak mentah yang berupa cairan pada suhu dan tekanan atmosfer biasa, memiliki titik didih persenyawan-persenyawaan hidrokarbon yang berkisar dari suhu yang sangat rendah sampai suhu yang sangat tinggi. Dalam hal ini, titik didih hidrokarbon (alkana) meningkat dengan bertambahnya jumlah atom C dalam molekulnya.
Dengan memperhatikan perbedaan titik didih dari komponen-komponen minyak bumi, maka dilakukanlah pemisahan minyak mentah menjadi sejumlah fraksi-fraksi melalui proses distilasi bertingkat. Destilasi bertingkat adalah proses distilasi (penyulingan) dengan menggunakan tahap-tahap/fraksi-fraksi pendinginan sesuai trayek titik didih campuran yang diinginkan, sehingga proses pengembunan terjadi pada beberapa tahap/beberapa fraksi tadi. Cara seperti ini disebut fraksionasi.
Minyak mentah tidak dapat dipisahkan ke dalam komponen-komponen murni (senyawa tunggal). Hal itu tidak mungkin dilakukan karena tidak praktis, dan mengingat bahwa minyak bumi mengandung banyak senyawa hidrokarbon maupun senyawa-senyawa yang bukan hidrokarbon.
Dalam hal ini senyawa hidrokarbon memiliki isomerisomer dengan titik didih yang berdekatan. Oleh karena itu, pemisahan minyak mentah dilakukan dengan proses distilasi bertingkat. Fraksi-fraksi yang diperoleh dari destilat minyak bumi ialah campuran hidrokarbon yang mendidih pada trayek suhu tertentu.
a. Pengolahan tahap pertama (primary process)
Pengolahan tahap pertama ini berlangsung melalui proses distilasi bertingkat, yaitu pemisahan minyak bumi ke dalam fraksi-fraksinya berdasarkan titik didih masing-masing fraksi.
Komponen yang titik didihnya lebih tinggi akan tetap berupa cairan dan turun ke bawah, sedangkan yang titik didihnya lebih rendah akan menguap dan naik ke bagian atas melalui sungkup-sungkup yang disebut menara gelembung.
Makin ke atas, suhu dalam menara fraksionasi itu makin rendah. Hal itu menyebabkan komponen dengan titik didih lebih tinggi akan mengembun dan terpisah, sedangkan komponen yang titik didihnya lebih rendah naik ke bagian yang lebih atas lagi. Demikian seterusnya, sehingga komponen yang mencapai puncak menara adalah komponen yang pada suhu kamar berupa gas.
Perhatikan diagram fraksionasi minyak bumi pada gambar 2 di atas.
Hasil-hasil frasionasi minyak bumi yaitu sebagai berikut.
1) Fraksi pertama
Pada fraksi ini dihasilkan gas, yang merupakan fraksi paling ringan. Minyak bumi dengan titik didih di bawah 30 oC, berarti pada suhu kamar berupa gas. Gas pada kolom ini ialah gas yang tadinya terlarut dalam minyak mentah, sedangkan gas yang tidak terlarut dipisahkan pada waktu pengeboran.
Gas yang dihasilkan pada tahap ini yaitu LNG (Liquid Natural Gas) yang mengandung komponen utama propana (C3H8) dan butana (C4H10), dan LPG (Liquid Petroleum Gas) yang mengandung metana (CH4)dan etana (C2H6).
2) Fraksi kedua
Pada fraksi ini dihasilkan petroleum eter. Minyak bumi dengan titik didih lebih kecil 90 oC, masih berupa uap, dan akan masuk ke kolom pendinginan dengan suhu 30 oC – 90 oC. Pada trayek ini, petroleum eter (bensin ringan) akan mencair dan keluar ke penampungan petroleum eter. Petroleum eter merupakan campuran alkana dengan rantai C5H12 – C6H14.
3) Fraksi Ketiga
Pada fraksi ini dihasilkan gasolin (bensin). Minyak bumi dengan titik didih lebih kecil dari 175 oC , masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 90 oC – 175 oC. Pada trayek ini, bensin akan mencair dan keluar ke penampungan bensin. Bensin merupakan campuran alkana dengan rantai C6H14–C9H20.
4) Fraksi keempat
Pada fraksi ini dihasilkan nafta. Minyak bumi dengan titik didih lebih kecil dari 200 oC, masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 175 oC - 200 oC. Pada trayek ini, nafta (bensin berat) akan mencair dan keluar ke penampungan nafta. Nafta merupakan campuran alkana dengan rantai C9H20–C12H26.
5) Fraksi kelima
Pada fraksi ini dihasilkan kerosin (minyak tanah). Minyak bumi dengan titik didih lebih kecil dari 275 oC, masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 175 oC - 275 oC. Pada trayek ini, kerosin (minyak tanah) akan mencair dan keluar ke penampungan kerosin. Minyak tanah (kerosin) merupakan campuran alkana dengan rantai C12H26–C15H32.
6) Fraksi keenam
Pada fraksi ini dihasilkan minyak gas (minyak solar). Minyak bumi dengan titik didih lebih kecil dari 375 oC, masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 250 oC - 375 oC. Pada trayek ini minyak gas (minyak solar) akan mencair dan keluar ke penampungan minyak gas (minyak solar). Minyak solar merupakan campuran alkana dengan rantai C15H32–C16H34.
Pada fraksi ini dihasilkan gas, yang merupakan fraksi paling ringan. Minyak bumi dengan titik didih di bawah 30 oC, berarti pada suhu kamar berupa gas. Gas pada kolom ini ialah gas yang tadinya terlarut dalam minyak mentah, sedangkan gas yang tidak terlarut dipisahkan pada waktu pengeboran.
Gas yang dihasilkan pada tahap ini yaitu LNG (Liquid Natural Gas) yang mengandung komponen utama propana (C3H8) dan butana (C4H10), dan LPG (Liquid Petroleum Gas) yang mengandung metana (CH4)dan etana (C2H6).
2) Fraksi kedua
Pada fraksi ini dihasilkan petroleum eter. Minyak bumi dengan titik didih lebih kecil 90 oC, masih berupa uap, dan akan masuk ke kolom pendinginan dengan suhu 30 oC – 90 oC. Pada trayek ini, petroleum eter (bensin ringan) akan mencair dan keluar ke penampungan petroleum eter. Petroleum eter merupakan campuran alkana dengan rantai C5H12 – C6H14.
3) Fraksi Ketiga
Pada fraksi ini dihasilkan gasolin (bensin). Minyak bumi dengan titik didih lebih kecil dari 175 oC , masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 90 oC – 175 oC. Pada trayek ini, bensin akan mencair dan keluar ke penampungan bensin. Bensin merupakan campuran alkana dengan rantai C6H14–C9H20.
4) Fraksi keempat
Pada fraksi ini dihasilkan nafta. Minyak bumi dengan titik didih lebih kecil dari 200 oC, masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 175 oC - 200 oC. Pada trayek ini, nafta (bensin berat) akan mencair dan keluar ke penampungan nafta. Nafta merupakan campuran alkana dengan rantai C9H20–C12H26.
5) Fraksi kelima
Pada fraksi ini dihasilkan kerosin (minyak tanah). Minyak bumi dengan titik didih lebih kecil dari 275 oC, masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 175 oC - 275 oC. Pada trayek ini, kerosin (minyak tanah) akan mencair dan keluar ke penampungan kerosin. Minyak tanah (kerosin) merupakan campuran alkana dengan rantai C12H26–C15H32.
6) Fraksi keenam
Pada fraksi ini dihasilkan minyak gas (minyak solar). Minyak bumi dengan titik didih lebih kecil dari 375 oC, masih berupa uap, dan akan masuk ke kolom pendingin dengan suhu 250 oC - 375 oC. Pada trayek ini minyak gas (minyak solar) akan mencair dan keluar ke penampungan minyak gas (minyak solar). Minyak solar merupakan campuran alkana dengan rantai C15H32–C16H34.
7) Fraksi ketujuh
Pada fraksi ini dihasilkan residu. Minyak mentah dipanaskan pada suhu tinggi, yaitu di atas 375 oC, sehingga akan terjadi penguapan.
Pada trayek ini dihasilkan residu yang tidak menguap dan residu yang menguap. Residu yang tidak menguap berasal dari minyak yang tidak menguap, seperti aspal dan arang minyak bumi. Adapun residu yang menguap berasal dari minyak yang menguap, yang masuk ke kolom pendingin dengan suhu 375 oC.
Minyak pelumas (C16H34–C20H42) digunakan untuk pelumas mesin-mesin, parafin (C21H44–C24H50) untuk membuat lilin, dan aspal (rantai C lebih besar dari C36H74) digunakan untuk bahan bakar dan pelapis jalan raya.
b. Pengolahan tahap kedua
Pengolahan tahap kedua merupakan pengolahan lanjutan dari hasil-hasil unit pengolahan tahapan pertama. Pada tahap ini, pengolahan ditujukan untuk mendapatkan dan menghasilkan berbagai jenis bahan bakar minyak (BBM) dan non bahan bakar minyak (non BBM) dalam jumlah besar dan mutu yang lebih baik, yang sesuai dengan permintaan konsumen atau pasar.
Pada pengolahan tahap kedua, terjadi perubahan struktur kimia yang dapat berupa pemecahan molekul (proses cracking), penggabungan molekul (proses polymerisasi, alkilasi), atau perubahan struktur molekul (proses reforming).
Proses pengolahan lanjutan dapat berupa proses-proses seperti di bawah ini.
1) Konversi struktur kimia
Dalam proses ini, suatu senyawa hidrokarbon diubah menjadi senyawa hidrokarbon lain melalui proses kimia.
a) Perengkahan (cracking)
Dalam proses ini, molekul hidrokarbon besar dipecah menjadi molekul hidrokarbon yang lebih kecil sehingga memiliki titik didih lebih rendah dan stabil.
Caranya dapat dilaksanakan, yaitu sebagai berikut:
• Perengkahan termal; yaitu proses perengkahan dengan menggunakan suhu dan tekanan tinggi saja.
• Perengkahan katalitik; yaitu proses perengkahan dengan menggunakan panas dan katalisator untuk mengubah distilat yang memiliki titik didih tinggi menjadi bensin dan karosin. Proses ini juga akan menghasilkan butana dan gas lainnya.
• Perengkahan dengan hidrogen (hydro-cracking); yaitu proses perengkahan yang merupakan kombinasi perengkahan termal dan katalitik dengan "menyuntikkan" hidrogen pada molekul fraksi hidrokarbon tidak jenuh.
Dengan cara seperti ini, maka dari minyak bumi dapat dihasilkan elpiji, nafta, karosin, avtur, dan solar. Jumlah yang diperoleh akan lebih banyak dan mutunya lebih baik dibandingkan dengan proses perengkahan termal atau perengkahan katalitik saja.
Pada fraksi ini dihasilkan residu. Minyak mentah dipanaskan pada suhu tinggi, yaitu di atas 375 oC, sehingga akan terjadi penguapan.
Pada trayek ini dihasilkan residu yang tidak menguap dan residu yang menguap. Residu yang tidak menguap berasal dari minyak yang tidak menguap, seperti aspal dan arang minyak bumi. Adapun residu yang menguap berasal dari minyak yang menguap, yang masuk ke kolom pendingin dengan suhu 375 oC.
Minyak pelumas (C16H34–C20H42) digunakan untuk pelumas mesin-mesin, parafin (C21H44–C24H50) untuk membuat lilin, dan aspal (rantai C lebih besar dari C36H74) digunakan untuk bahan bakar dan pelapis jalan raya.
b. Pengolahan tahap kedua
Pengolahan tahap kedua merupakan pengolahan lanjutan dari hasil-hasil unit pengolahan tahapan pertama. Pada tahap ini, pengolahan ditujukan untuk mendapatkan dan menghasilkan berbagai jenis bahan bakar minyak (BBM) dan non bahan bakar minyak (non BBM) dalam jumlah besar dan mutu yang lebih baik, yang sesuai dengan permintaan konsumen atau pasar.
Pada pengolahan tahap kedua, terjadi perubahan struktur kimia yang dapat berupa pemecahan molekul (proses cracking), penggabungan molekul (proses polymerisasi, alkilasi), atau perubahan struktur molekul (proses reforming).
Proses pengolahan lanjutan dapat berupa proses-proses seperti di bawah ini.
1) Konversi struktur kimia
Dalam proses ini, suatu senyawa hidrokarbon diubah menjadi senyawa hidrokarbon lain melalui proses kimia.
a) Perengkahan (cracking)
Dalam proses ini, molekul hidrokarbon besar dipecah menjadi molekul hidrokarbon yang lebih kecil sehingga memiliki titik didih lebih rendah dan stabil.
Caranya dapat dilaksanakan, yaitu sebagai berikut:
• Perengkahan termal; yaitu proses perengkahan dengan menggunakan suhu dan tekanan tinggi saja.
• Perengkahan katalitik; yaitu proses perengkahan dengan menggunakan panas dan katalisator untuk mengubah distilat yang memiliki titik didih tinggi menjadi bensin dan karosin. Proses ini juga akan menghasilkan butana dan gas lainnya.
• Perengkahan dengan hidrogen (hydro-cracking); yaitu proses perengkahan yang merupakan kombinasi perengkahan termal dan katalitik dengan "menyuntikkan" hidrogen pada molekul fraksi hidrokarbon tidak jenuh.
Dengan cara seperti ini, maka dari minyak bumi dapat dihasilkan elpiji, nafta, karosin, avtur, dan solar. Jumlah yang diperoleh akan lebih banyak dan mutunya lebih baik dibandingkan dengan proses perengkahan termal atau perengkahan katalitik saja.
Selain itu, jumlah residunya akan berkurang.
Alkilasi adalah suatu proses penggabungan dua macam hidrokarbon isoparafin secara kimia menjadi alkilat yang memiliki nilai oktan tinggi. Alkilat ini dapat dijadikan bensin atau avgas.
c) Polimerisasi
Polimerisasi adalah penggabungan dua molekul atau lebih untuk membentuk molekul tunggal yang disebut polimer. Tujuan polimerisasi ini ialah untuk menggabungkan molekul-molekul hidrokarbon dalam bentuk gas (etilen, propena) menjadi senyawa nafta ringan.
d) Reformasi
Reformasi adalah proses yang berupa perengkahan termal ringan dari nafta untuk mendapatkan produk yang lebih mudah menguap seperti olefin dengan angka oktan yang lebih tinggi. Di samping itu, dapat pula berupa konversi katalitik komponen-komponen nafta untuk menghasilkan aromatik dengan angka oktan yang lebih tinggi.
e) Isomerisasi
Dalam proses ini, susunan dasar atom dalam molekul diubah tanpa menambah atau mengurangi bagian asal. Hidrokarbon garis lurus diubah menjadi hidrokarbon garis bercabang yang memiliki angka oktan lebih tinggi. Dengan proses ini, n-butana dapat diubah menjadi isobutana yang dapat dijadikan sebagai bahan baku dalam proses alkilasi.
2) Proses ekstraksi
Melalui proses ini, dilakukan pemisahan atas dasar perbedaan daya larut fraksifraksi minyak dalam bahan pelarut (solvent) seperti SO2, furfural, dan sebagainya. Dengan proses ini, volume produk yang diperoleh akan lebih banyak dan mutunya lebih baik bila dibandingkan dengan proses distilasi saja.
3) Proses kristalisasi
Pada proses ini, fraksi-fraksi dipisahkan atas dasar perbedaan titik cair (melting point) masing-masing. Dari solar yang mengandung banyak parafin, melalui proses pendinginan, penekanan dan penyaringan, dapat dihasilkan lilin dan minyak filter. Pada hampir setiap proses pengolahan, dapat diperoleh produk-produk lain sebagai produk tambahan. Produk-produk ini dapat dijadikan bahan dasar petrokimia yang diperlukan untuk pembuatan bahan plastik, bahan dasar kosmetika, obat pembasmi serangga, dan berbagai hasil petrokimia lainnya.
4) Membersihkan produk dari kontaminasi (treating)
Hasil-hasil minyak yang telah diperoleh melalui proses pengolahan tahap pertama dan proses pengolahan lanjutan sering mengalami kontaminasi dengan zat-zat yang merugikan seperti persenyawaan yang korosif atau yang berbau tidak sedap. Kontaminan ini harus dibersihkan misalnya dengan menggunakan caustic soda, tanah liat, atau proses hidrogenasi.
Proses pengolahan minyak mentah menjadi fraksi-fraksi minyak bumi yang bermanfaat dilakukan di kilang minyak (oil refinery). Di Indonesia terdapat sejumlah kilang minyak, antara lain:
- kilang minyak Cilacap, Jawa Tengah (Kapasitas 350 ribu barel/hari);
- kilang minyak Balongan, Jawa Tengah (Kapasitas 125 ribu barel/hari);
- kilang minyak Balikpapan, Kalimantan Timur (Kapasitas 240 ribu barel/hari);
- kilang minyak Dumai, Riau;
- kilang minyak Plaju, Sumatra Selatan;
- kilang minyak Pangkalan Brandan, Sumatra Utara; dan
- kilang minyak Sorong, Papua.
C. Produk Minyak Bumi
- LPG (Liquified Petroleum Gas)
LPG (Liquified Petroleum Gas) merupakan gas minyak bumi yang dicairkan pada suhu biasa dan tekanan sedang, sehingga LPG dapat disimpan dan diangkut dalam bentuk cair dalam bejana dengan suatu tekanan. Belerang sengaja ditambahkan dalam LPG dalam bentuk senyawa merkaptan, etil atau butil merkaptan yang mempunyai bau tidak sedap yang dapat digunakan untuk mengetahui adanya kebocoran gas.
Untuk memungkinkan terjadinya ekspansi panas (thermal expansion) dari cairan yang dikandungnya, tabung elpiji tidak diisi secara penuh, hanya sekitar 80-85% dari kapasitasnya. Rasio antara volume gas bila menguap dengan gas dalam keadaan cair bervariasi tergantung komposisi, tekanan dan temperatur, tetapi biasaya sekitar 250:1.
Tekanan di mana elpiji berbentuk cair, dinamakan tekanan uap-nya, juga bervariasi tergantung komposisi dan temperatur; sebagai contoh, dibutuhkan tekanan sekitar 220 kPa (2.2 bar) bagi butana murni pada 20C (68F) agar mencair, dan sekitar 2.2 MPa (22 bar) bagi propana murni pada 55C (131F).
Untuk memungkinkan terjadinya ekspansi panas (thermal expansion) dari cairan yang dikandungnya, tabung elpiji tidak diisi secara penuh, hanya sekitar 80-85% dari kapasitasnya. Rasio antara volume gas bila menguap dengan gas dalam keadaan cair bervariasi tergantung komposisi, tekanan dan temperatur, tetapi biasaya sekitar 250:1.
Tekanan di mana elpiji berbentuk cair, dinamakan tekanan uap-nya, juga bervariasi tergantung komposisi dan temperatur; sebagai contoh, dibutuhkan tekanan sekitar 220 kPa (2.2 bar) bagi butana murni pada 20C (68F) agar mencair, dan sekitar 2.2 MPa (22 bar) bagi propana murni pada 55C (131F).
- Komponen utama LPG (Liquified Petroleum Gas): propan dan butan (etana dan pentan dalam jumlah kecil)
- KegunaanLPG (Liquified Petroleum Gas) : bahan bakar rumah tangga dan industri, bahan bakar motor bakar, (propan mempunyai angka oktan 97, diperlukan perbandingan kompresi tinggi, 10:1), bahan baku petrokimia.
- Bensin
Bensin merupakan campuran kompleks yang terutama terdiri dari senyawa-senyawa HC, yang mempunyai titik didih ASTM sekitar 40-180C, dan digunakan sebagai bahan bakar mesin motor bakar.
bensin motor dibagi lima kelas berdasarkan volatilitasnya, A,B, C,D, dan E (ASTM D 439-89). Spesifikasi ini menetapkan karakteristik bensin motor untuk digunakan di daerah-daerah dengan kondisi operasi yang berbeda-beda.
bensin motor dibagi lima kelas berdasarkan volatilitasnya, A,B, C,D, dan E (ASTM D 439-89). Spesifikasi ini menetapkan karakteristik bensin motor untuk digunakan di daerah-daerah dengan kondisi operasi yang berbeda-beda.
- Komponen utama bensin adalah n-heptena (C7H16) dan isooktana (C8H18). Kualitas bensin ditentukan oleh kandungan isooktana (bilangan oktan). Bilangan oktan untuk n-heptana = 0 dan isooktana = 100.
- Fungsi kandungan isooktana pada bensin:
Mengurangi ketukan (knocking) pada mesin
2.Meningkatkan efisiensi pembakaran sehingga energi yang dihasilkan lebih besar. - Bilangan oktan bensin dapat ditingkatkan dengan:
Memperbesar kandungan isooktana
2.menambah zat akditif antiketukan (TEL, MTBE dan etanol).
*Tetraethylleed (TEL) Pb(C2H5)4
Untuk mengubah Pb dari padat ke gas ditambahkan zat adiktif lain yaitu etilen bromida (C2H5Br) yang nantinya akan bereaksi membentuk uap PbBr2. Namun Pb nantinya dapat membahayakan kesehatan karna merupakan logam berat.
*Methyl Tertier Buthyl Ether (MTBE)
*Methyl Tertier Buthyl Ether (MTBE)
Memiliki bilangan oktan 118, dan lebih aman disbanding TEL karena tidak mengandung logam berat namun tetap berpotensi mencemari lingkungan karena sulit diuraikan Mikroorganisme.
*Etanol
Memiliki bilangan oktan 123 dan lebih unggul disbanding TEL dan MTBE karena tidak mencemari udara dan mudah diuraikan mikroorganisme. Selain itu bahan baku untuk membuat etanol juga dari fermentasi tumbuh-tumbuhan yang melimpah dialam dan dapat dibudidayakan.
Memiliki bilangan oktan 123 dan lebih unggul disbanding TEL dan MTBE karena tidak mencemari udara dan mudah diuraikan mikroorganisme. Selain itu bahan baku untuk membuat etanol juga dari fermentasi tumbuh-tumbuhan yang melimpah dialam dan dapat dibudidayakan.
- Bahan Bakar Jet (AVTUR)
Avtur adalah campuran senyawa hidrokarbon yang digunakan sebagai bahan bakar mesin turbin atau mesin jet penerbangan. Mesin jet penerbangan bekerja dari suhu kamar sampai suhu sangat rendah -70C (-90F), fraksi solar dan bensin tidak dapat dipakai.
Bahan bakar yang paling cocok adalah kerosin, Fraksi kerosin terbatas dari hasil kilang sehingga disamping fraksi kerosin di dalam bahan bakar jet juga ikutkansertakan fraksi bensin dan fraksi gas rengkahan yang mendidih dalam daerah didih kerosin (kerosin rengkahan).
Bahan bakar yang paling cocok adalah kerosin, Fraksi kerosin terbatas dari hasil kilang sehingga disamping fraksi kerosin di dalam bahan bakar jet juga ikutkansertakan fraksi bensin dan fraksi gas rengkahan yang mendidih dalam daerah didih kerosin (kerosin rengkahan).
- Sifat penting : sifat-sifat yang berhubungan dengan pembakaran bahan bakar (penyalaan, stabilitas nyala, deposit karbon, dll) dan penanganan bahan bakar (pemompaan, pengabutan, penyaringan, dll) terutama pada penerbangan tinggi.
- Kandungan aromat perlu dibatasi sampai 25% untuk mengurangi asap. Kecenderungan pembentukan asap pada pembakaran senyawa HC menurun menurut: aromat, naften, iparafin, n-parafin.
- Bahan Bakar Disel
Bahan bakar diesel: fraksi minyak bumi yang mendidih sekitar 175-370C dan digunakan sebagai bahan bakar mesin diesel. Mesin diesel bekerja dengan kecepatan maksimum kebih rendah dibandingkan dengan mesin bensin yang seringkali memiliki kecepatan di atas 4000 rpm.
Mesin diesel yang bekerja pada kecepatan antara 500-2500 rpm. Mesin diesel putaran lambat (kecepatan < 500rpm), mesin diesel putaran sedang (kecepatan500-1200), mesin diesel putaran tinggi (kecepatan >1200 rpm).
Mesin diesel yang bekerja pada kecepatan antara 500-2500 rpm. Mesin diesel putaran lambat (kecepatan < 500rpm), mesin diesel putaran sedang (kecepatan500-1200), mesin diesel putaran tinggi (kecepatan >1200 rpm).
- Sifat Bahan Bakar Diesel
- Kualitas penyalaan
- Volatilitas
- Viskositas
- Titik tuang dn titik kabut
- Kebersihan,
- Kecenderungan bahan bakar untuk memberikan endapan karbon
- Kandungan belerang
5. Aspal (Bitumen)
Aspal atau bitumen adalah suatu cairan kental yang merupakan senyawa hidrokarbon dengan sedikit mengandung sulfur, oksigen, dan klor. Bitumen atau aspal merupakan campuran hidrokarbon yang tinggi berat molekul. Rasio persentase antara komponen bervariasi, sehubungan dengan asal-usul minyak mentah dan metode distilasi.
Bahkan, aspal sudah dikenal sebelum awal eksploitasi ladang minyak sebagai produk asal alam, yang disebut dalam hal ini adalah aspal asli. Bitunie adalah produk alami tidak lagi digunakan dalam industri.
Bitumen diperoleh sebagai produk sampingan dari penyulingan minyak bumi dapat digunakan sebagai atau mengalami proses fisik dan kimia yang mengubah komposisi dalam rangka untuk memberikan sifat tertentu. Operasi yang paling umum adalah proses oksidasi dan pencampuran dengan polimer yang berbeda.
Bahkan, aspal sudah dikenal sebelum awal eksploitasi ladang minyak sebagai produk asal alam, yang disebut dalam hal ini adalah aspal asli. Bitunie adalah produk alami tidak lagi digunakan dalam industri.
Bitumen diperoleh sebagai produk sampingan dari penyulingan minyak bumi dapat digunakan sebagai atau mengalami proses fisik dan kimia yang mengubah komposisi dalam rangka untuk memberikan sifat tertentu. Operasi yang paling umum adalah proses oksidasi dan pencampuran dengan polimer yang berbeda.
- Aspal Alam
Aspal alam terbentuk perlahan-lahan dari fraksionasi alami minyak bumi di dekat minyak bumi. Aspal alam terdapat di alam biasanya dalam bentuk batuan sehingga biasa disebut batuan aspal.
Aspal alam disebabkan adanya pengaruh tektonik terhadap minyak bumi yang diduga semula terkandung dalam batuan induk kemudian berimigrasi melalui dasar dan mengimpregnasi batuan sekitarnya, yaitu batugamping dan batupasir. Material aspal membentuk suatu danau yang mengisi pori-pori, celah batuan, atau deposit yang mengandung campuran aspal alam dan bahan mineral dalam berbagai porsi.
Aspal alam disebabkan adanya pengaruh tektonik terhadap minyak bumi yang diduga semula terkandung dalam batuan induk kemudian berimigrasi melalui dasar dan mengimpregnasi batuan sekitarnya, yaitu batugamping dan batupasir. Material aspal membentuk suatu danau yang mengisi pori-pori, celah batuan, atau deposit yang mengandung campuran aspal alam dan bahan mineral dalam berbagai porsi.
- Aspal Minyak
Sumber aspal ini berasal dari kilang minyak (refinery bitumen). Aspal yang dihasilkan dari industri kilang minyak mentah (crude oil) dikenal sebagai residual bitumen, straight bitumen atausteam refined bitumen. Istilah refinery bitumen merupakan nama yang tepat dan umum digunakan.
Aspal yang dihasilkan dari minyak mentah yang diperoleh melalui proses destilasi minyak bumi. Proses penyulingan ini dilakukan dengan pemanasan hingga suhu 350C di bawah tekanan atmosfir untuk memisahkan fraksi-fraksi minyak seperti gas oline (bensin), kerosene(minyak tanah) dan gas oil.
Aspal yang dihasilkan dari minyak mentah yang diperoleh melalui proses destilasi minyak bumi. Proses penyulingan ini dilakukan dengan pemanasan hingga suhu 350C di bawah tekanan atmosfir untuk memisahkan fraksi-fraksi minyak seperti gas oline (bensin), kerosene(minyak tanah) dan gas oil.
Aspal memiliki beberapa kegunaan antara lain:
- Untuk mengikat batuan agar tidak lepas dari permukaan jalan akibat lalu lintas (water proofing, protect terhadap erosi)
- Sebagai bahan pelapis dan perekat agregat.
- Lapis resap pengikat (prime coat) adalah lapisan tipis aspal cair yang diletakan di atas lapis pondasi sebelum lapis berikutnya.
- Lapis pengikat (tack coat) adalah lapis aspal cair yang diletakan di atas jalan yang telah beraspal sebelum lapis berikutnya dihampar, berfungsi pengikat di antara keduanya.
- Sebagai pengisi ruang yang kosong antara agregat kasar, agregat halus, dan filler.
Berikut ini diberikan pula beberapa contoh usaha pemanfaatan
- Aspal alam (aspal buton) Karena keadaan yang solid tersebut, maka di dalam penggunaannya aspal perlu dipanaskan terlebih dahulu, contoh : pada pembuatan beton aspal campuran panas( hot mixDengan pemanasan maka tingkat kekerasan ( koiisistensi) aspal akan berubah. Bahan yang konsistennya berubah dengan berubahnya suhu disebut bahan thermoplastic, dan aspal termasuk ke dalam kelompok ini.
- Aspal Emulsi Penggunaan : Daya lekat antar aspal emulsi dan permukaan batu/jalan.sangat tergantung pada proses penguapan air dan reaksi kimia antara kedua permukaan yang bersentuhan tersebut.
0 Response to " Pengertian minyak bumi Adalah | Pengertian, Komposisi, Proses Pengolahan, Produk, dan Penggunaan "
Post a Comment